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We examine position encounter-evasion problems for inherently linear controlled 

systems in which the players’ controls do not separate additively. We propose 
construction permitting effective solutions to these problems in the classes of 
pure and mixed strategies and of counterstrategies [l, 23. We investigate the 

relation between the proposed and the program constructions for solving such 
problems, The constructions used in this paper go back to the direct method 
[3- 61. In contrast to [3-S] the approach described here includes the solving 
of position problems. 

1. Let the motion of a conflict-controlled system be described by the inherently 
linear differential equation 

&/dt = A (t) z + f (t, u, v), 5 (to) = So; u = p = RP (1. 1) 

VEQCR’ 
Here 5 is an n-dimensional phase vector, A (t) is an ( n X n)-dimensional continu- 

ous matrix function, f (t, 24, v) is a vector function continucus in all arguments, P 
and Q are compacta. A convex compactum M in space R” and the function r (5, 

m) - 11 x - n 11 are specified, (jp/ is the Euclidean norm of vector p, m E M). 
The game’s outcome is determined by the functional 

where 6 is some finite instant. The first player strives to minimize functional (1.2) and 
the second player, to maximize it. We assume that the players’ pure strategies U, and 
V 11 mixed strategies Us and V,, counterstrategies Us and V, and the limit transi- 

tion generated by them from the corresponding Euler polygonal lines of the motion 

xui [tl (xvi It]), i = 1,2,3 , are defined in the same way as in [l, 21. 
Problem 1. For a fixed position {to, q,) find the optimal minimax strategy 

UC-+- u“ (t, x) or the optimal minimax mixed strategy U,” + 1-1 (du / t, x) or the 
optimal minimax ccunterstrategy Us0 + u” (t, x, y) which satisfies the condition 

SUP cP(X[.; tOxOUioj) = mjnp~cp(~[.;to, 50, Url), i=i,2,3 (1.3) 
x I.1 

on any motiou xuiO [tl = 5 It;. t,, 2,: Viol. 
Problem 2. For a fixed position {to, x0} find the optimal maximin strategy 

vi0 + V’ (t, X) or the optimal maximin mixed strategy Vs“ +- Y” (dv / t, x) or the 
optimal maximin counterstrategy V,O + u” (t, E, u) which satisfies condition 

r=i,2,3 (1.4) 
x I.1 
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on any motion zviO[t] = 5 [t; to, X0, Vi”]. 

2, Let us consider the connection between the solvability conditions for Problems 1 
and 2 in the form of extremal aiming and using an a p r i o I i stable bridge [l, 2). For 
definiteness we present the reasonings here for the minimax formulation, i. e. for the pair 
strategy U1 -counterstrategy V s. The corresponding statements, as applied to a differen- 
tial game in mixed strategies and in the class c~~ters~a~gy Us -strategy V, are veri- 
fied similarly ; we present them below without proof, 

We introduce an auxiliary program construction, Namely, by the symbol V, we denote 
the counterstrategy~program [Z] which associates with every pair {t, U} a set V (t, 
u) E Q up~r-~rnic~~u~s with respect to inclusion relative to {t, u}. We deter- 
mine a program motion 5 (t) = z (t; t,, z*, V,) (t* E ito, -81) a~ a solution of the 
contingent differential equation 

2’ 0) E A 0) 5 fr) + F (t, L); (2.11 

F (t, v,,) = co {j : f = f (t, u, v), v E v (t, u), u E P) 

when: co {f} is the closed convex hull of the set {f} of vectors f. Further, we denote 

er”(t*, %J - aloft*, “*; x0) = iEyfir;, ~*(t*, x*; z) (2.2) 
*3 

%‘(t,,~,;z) = mvax ~;:o(s(T; t*,x*,V,)) 
* 

(2.3) 

It can be verified that the quantity sIO (t*, z*; T) in (2.3) can be represented by the 
equality 

elo(t*, 2,; z) = Fax max I11 {X (T, t,)z,], + (2.3 
v Il~ll=1 

if the right-hod side of this equality is positive ; otherwise aI0 (t*, CC*; t} = 0. Here 
I is an m-dimensional vector, X (t, z) is the transition matrix for the solutions of 
the equation 2’ = A (t) II;, X (7, z) = E, PM (I) = min I'm for (- m) E M, 
the prime denotes transposition. We note that the optimal program VU0 z T/‘” (t, u), 
imp~y~g the max~um in (2.4), exists, while the expression (2.4) for sr” (t*, z*; z) 
can be written as 

(2.5) 

We say that the game (1.1). (1.2) is regular if the followine conditions are fulfilled. 
Condition AL For every position {t*, CG*} (t, < t, < 6, t, =#= ‘to, ezo (t*, 

x*1 Es (0, B>, B = con&) I for any choice of function u (u) we can find at least one 
instant z. E [t,, 61 and one vector f* E co {f : f =f (t, u, v (u)), ue P} such 
that the inequality 
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is valid for any of the maximizing vectors 6” in (2.4), corresponding to the instant ?a* 

Condition B1. For every position {I&, X*) (to < t, < 19, elo (t*, cc,) E 
(0, fj) , for any choice of vector u e P we can find at least one vector f* E co {f : 

f = f (t, a, vf , ZJ E Q) such that the inequality 

1: x b-3, t*v* = r$y z;lx (Z@, t*)f(t,, u, u) 

is valid for any of the maximiz~g vectors 8’ in (2.4)) corresponding to any of the mini- 

mizing instants X0 in (2.2). 
We note that Conditions A 1 and B 1 correspond, respectively, to Conditions A, B and 

C of [7]. but now in application to the inherently linear system (1.1) being analyzed. 
The validity of the next assertion is proved by reasonings similar to those in [?I. 

Theorem 2. 1. Let the regularity Conditions A 1 and B.1 be fulfilled. Then the 

strategy VI0 + u” (t, X), extremal [I, 23 to the set WI,, = ({t,X}: aI0 (t, 2$< 
alo (t,,, z,)}, solves Problem 1 in the minimax case, guaranteeing an encounter of every 

motion x [t; to, zor Utf of system (1.1) with set M when Q” (to, q,) = 0 , The 
counterstrategy Vs” + 77” (t,X, u), extremal to me set W,e = {{t, 2): 13,” (t, S) > 
elo(to, x,)}, solves Problem 2 in the minimax case. 

We now consider the connection between the regularity Conditions A 3. and B 1 and 

the following two conditions. 
Condition Cl. The function 

x1 (6 r7 0 = - F&P y..,” 1’ {X (z, t)f (t, u, Y)}, 

is convex in I for all t E It,, Z] and for all 7 E it,,, @f, 

Condition Dl. For every vector u E P we can find a vector ft+* E Co {f : 

f = f (t, u, v), u E P) such that we have 

1’ {X 67 t) f:,&n = ::; I’ (X 6, t) f (6 u, 4Ln 

for all Z and t (t, < t < Z < 8) and for all m-dimensional vectors I , 
By the symbol H, (X, t) we denote the set defined by the relation 

HI (~7 t) = $I,, {(X 6, t)f (6 u, u (UN, : u E P) (2.9) 

when: the function v (u) E Q within the braces is fixed, while the vector u rangesover 
the whole set P; the intersection is taken over all possible functions v (u) E Q. It 
can be verified that an m-dimensional vector b belongs to set HI (z, t) if and only if 
it satisfies the condition 

max f min max I’ (X (.t, t) f (t, u, V)}, - I’hl< 0 
])111=1 UEP 2x3 

(2.7) 

When Condition Cl is satisfied, a vector ha, for which condition (2.7) is satisfied exists, 
as is easy to show, and consequently, the sets H, (2, t) are nonempty in this case, 

We introduce,further, the quantity zl* (t*, X*> defined by the equality 

El* (f*, z*> = min min min r(X(z; 1,, x.+), m) 
XELf,, a1 X(,) m3d (2.8) 

where z (t; t,, X*) is a motion, being a solution of the contingent Eq. (2. 9) under con- 
straint (2.10) 

X- (t) = A (t) X (0 + g (t) (2.9) 
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{X (‘d, 0 g (d)m E II1 (% t> (2.10) 

We note that from the construction of the sets Hi (r, t) it follows that the sets 

IV@.) = {z: {X (‘t, t) X:g(.) (t>}m = {X (r, t) 2}m} 

where Xg(.) (t) is a solution of Eq. (2. 9) under “control” g (t), satisfying (2. lo), form 

a minimax u-stable bridge. Therefore,if for the initial position {to, x,,} we can find 

a solution %a(.) (t) of Eq. (2.9) satisfying the condition P+(.) (t) E M for some ‘G E 
[to, 61, then the strategy /J(e) + UC’) (t, X) extremal [l, 21 to this bridge w,a(.) 

ensures the encounter of system (1. l), (1.2) with set M by this instant. The following 
assertion is valid. 

L e m ma 2. 1. Let Condition Cl be satisfied, Then the equality 

is valid. 
erO (t*, Z*) = &I* (t*7 50.) (2.11) 

The lemma is proved on the following plan. Let T = 7“ be the minimizing instant 

defined by relation (2.8) and let Z* (t; t,, x*) = zg+(.) (I; t*, x*) (t* < 1 C z”) be the 
minimizing motion from (2.8), corresponding to this instant. From the fact that the bridge 
wf*(.) is minimax u-stable, we deduce the existence of a program motion 5 (t; t*, x*, 

VU), for each program V, , such that 

E; (&CT Giz) = 0 (x (To; t,, x*)) = 0 (x(T”; t,, I.+, V,)) 

Hence follows the validity of the inequality 

P ; (t** I*) < F; (t*, X*I 

Let us show the validity of the relation inverse to inequality (2.12) 

e; (t*, 5*) ,, f; (t*, x*) 

The required assertion will then follow from (2.12) and (2,13). 

In fact. expression (2.8) for F; (t*, .z*) can be written as 

(2.12) 

(2.13) 

l’h (t) dt + pnr (I) 1 (2.14) 

By I* and h*(t) we denote an m-dimensional vector and a vector function implying, 

respectively, the maximum and the minimum in (2.14). We take a vector function 
u* (t) which satisfies the minimax condition 

for almost all t e [t*, z”] and for each t E [tr, z”] we find the vector ft,%*(t, for which 

the equality {X (To, t) ft,u*(t))m = h (1) (2.16) 

is satisfied. The existence of vector h (t) E HI (z”, t) in (2.16) follows from the fact 
that under Condition Cl the intersection of the set HI (T-O, t) with any of the sets F, ft, 

n) = co (1-X (z”, t) f (& IL, u))~: v E Q) is nonempty for every fixed u E P . From 
(2.14)-(2.16) we obtain 

P’h (t) < 1*’ {X (P, t) ft,U*(t))m < F&p Fz; 1*.(x (To, t) f (t, u, v)), 

whence the required equality (2.13) is derived with due regard to (2.5). 
The following statement is valid : 
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Theorem 2. 2. Let Conditions Cl and Dl be fulfilled. From Conditions Cl and 
Dl follow the regularity Conditions Al and Bl for game (1. l), ( 1.2) and the equality 

ei” (to, 20) = ai* (tat %). 
In fact, from the convexity of the function xi (7, t, 1) it follows that the maximizing 

vector 1” in (2.5) is unique. But then Condition Al is automatically satisfied. Condi- 

tion Bl follows directly from Condition Dl, and the vector f* dealt with in Dl satisfies 
the corresponding equality for all values of vector 1 and not only for the vectors I”. 

The equality eiO (r,, x,,) = ai* (to, z,,) has been proved in Lemma 2.1. 
Thus, when Conditions Cl and Dl are satisfied, the problem of encounter by the instant 

7’ (Problem 1) can be solved either by means of the sets Hi (zD, t) of (2.6) or by means 
of a minimax u-stable bridge IV,, E of program absorption. Furthermore, under Condi- 

tion Cl the function &iO (t, 2; z) is differentiable [8] in the region ei0 (t, z) E (0, j3) 
for each fixed 7 ; therefore, in the case being examined the encounter problem is effec- 

tively solvable by the extremal aiming strategy [S]. When Condition Dl is satisfied, the 
evasion problem (Problem 2) can therefore be solved by using the v-stable program 

bridge W,c. Moreover, it turns out that when Conditions Cl and Dl are satisfied, thk 
evasion problem is effectively solvable by the counterstrategy of generalized extremal 

aiming. We define this counterstrategy in the following manner. 

We introduce the function 

hi(tYs) = [ ,,&;r) dr 
t 

By Gr we denote the region of positions {t, z} for which era (t, 2) E (0, fl). Since 
for each T the function alo (t, s; 7) is differentiable in region G1 , the function k, (t, 

z) is differentiable in this region. If {t, 2) e G,, the counterstrategy V(e) (t, 2, U) 
of generalized extremal aiming is identified with any function v (t, z, U) E Q Bore1 
in U ; if, however, {t, z} E G,, then V@) (t, Z, U) is identified with any function 
v(e) = v(e) (t, 5, U) E Q Bore1 in u , for which the maximum condition 

II - ail;; @ -J’ j (t, u, v’“‘) = all: [ - ““l,Cy z, ]‘f (t, 24, v) 

is satisfied, where [ah, (t, z) / as] is the matrix of partial derivatives 8h, (t, z) / &xi, 

I: = 1, 2,. . ., n. We write the contingent equation (2.17) 

5. E A (t)z + co {t : f = f (t, 4 v (41, v (u) E We) (t, 2, u), u E P) 

The following assertion is valid. 
Theorem 2. 3. Let Conditions Cl and Dl be satisfied, Then the counterstrategy 

Vce) (t, 2, U) of generalized extremal aiming ensures the evasion of all motions 
z it1 = 2 It; to, x0, V@)l in (2.17) from the set M on the interval [to, 61 when 

ai (tot %) E (0, B). 
Directly from Theorems 2.2 and 2.3 follows 

Theorem 2. 4. Let Conditions Cl and Dl be satisfied and let Q” (to, 2s) E (0, 
p). Then eIo (to, x0) = e,* (to, x0) is the value of the encounter-evasion game. 

3, Here we state without proof assertions analogous to those presented in Sect. 2 in 
connection with the solution of Problems 1 and 2 in the class of mixed strategies (Us, 
vs} and for the pair { Us, V,}. We denote 
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Ps v*, z*; z) = s Max min 1’ (X {z, t) f (t, U, u)}~ dt 
t, GQ UEP 

where p (du) and v (dv) are probability measures on P and Q , respectively. We 
say that in the cases being considered the game (1. l), (1.2) is regular if the following 
conditions are satisfied, respectively. 

Condition A2 (A3). For every position {t*, z*) (t, < t, < 19, t, # z@, 
EfO (t*, s*)EE (0, p), i = 2, 3), for any choice of probability measure v*(du) (of vec- 
tor v E Q) we can find at least one instant ‘Co E It,, 61 and one probability mea- 

sure IL* @4 (vector f* E CO {f : f = f (t, u (v), v), u (v) E P)> such that the 

relation 

ss ~xf~o,t*)f(t*,u,v)~,(du)~,(dv) -S 
PO 

is valid for any of the minimizing vectors I” in (3, I), correponding to instant zO 
Condition B2 (B3). 

(0, B), 
For every position {t*, x*} (t, < t, < *, e? (&w c.,.) E 

i= 2, 3) ,for any choice of probabiliq measure CL* (du) (of function a (v)) 
we can find at least one probability measure V* (dv) (vector f* ~5 co {f : f = f (t, 

24, v), u = u (v), v E Q> 1 such that the relation 

ss 1”: X (G, &)f (t*, ~9 v) V* (du) y* (du) > 
PQ 

is valid for any of the maximizing vectors 1” in (3. l), corresponding to any of the mini- 
mizing instants z,in (3.2). 

An assertion, similar to Theorem 2. f, on the solvability of Problems 1 and 2 in the 
class of mixed strategies (Us, V,} (in the class counterstrategy Us - strategy VI) 
is valid when the regularity Conditions A2 and B2 (A3 and B3) are satisfied. 

For the cases being examined let us now formulate the solvability conditions for Prob- 
lems 1 and 2 in a form similar to Conditions C1 and Dl. Here these conditions take the 
form : 

C on d i t i o n C2 (C3). The function 
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xs (t, z, 2) = - min max 

is convex in I for all t E [to, 71 and for all r E [to, 61 . 
Condition D2(D3). For every measure ~1 (du) (fnnction u (v} E P) we can 

findameasure v(dv)(vector f*Eco(j:j=f(t, u(v), v), vEQ})suchthat 
we have 

for all z and t (tD < I: < z < 13) and for all m-dimensional vectors I. 
Introducing the sets defined by the relations 

we can verify the validity of the next statement by using arguments similar to those in 
Sect. 2. 

Theorem 3. 1. Let conditions C2 and D2(C3 and D3) be satisfied. Then the 
regularity Conditions A 2 and B 2 fA 3 and B 3) for game (1. I), (1.2) are satisfied auto- 
matically and es” (to, x0) = es* (to, 2,) (es” (to, x0> = es* (tat SO)). The mixed 
strategy V&e) (t, 3~) of generalized extremal aiming when es” (t,, so) E (0, fl) (the 
generalized strategy Vice) (1, z) when 82 (t,, a+) E (0, fl)) ensures the evasion of 
all motions ztt; t,, X,,,V,Je)] (z [t; t,, s,,,V,ce)])from set N on lt,, 
eri* (to, 2,) = es* (to, 

al. The quantity 
q,) (es0 (t,,, so} = es* (to, so)) is the value of the encoun- 

ter-evasion game. 
Here, when (t, 2) & GB ({t, 5) e 6s) the mixed strategy va’“) (t, x) (the stra- 

Qy VI(@) (4 d:>) is identified with any probabiliq measure v (dv I t, 5) on Q (any 
function v (t, z) E Q), and when {t, s}E Gs, ({t, zc)~ Ga) with any probability 
measure v(e) (&I I t, 2) on Q (any function tie) (t, z) E Q> for which the condition 

min 
d:s[ 1* Q 

max min 
SS[ 

- 
” p P 

Bhz~~~)]‘j(t,u,u)~(~u)Y (du) 

u, ~(~1) = max min - 
OEQ UEP 

is satisfied. 
Above we have considered the solution of problems 1 and 2 on ideal motions 5 ItI 

which are the uniform limits of the corresponding Euler polygonal lines. However, when 
solving these problems we can pass to the motions realizable in practice ; this can be 
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done by turning directly to the Euler polygonal lines, The next assertion is valid. 
Theorem 3.2. For any position {to, z,} and any number CL > 0 we can find a 

number 6 > 0 such that for A(k)<6 the inequality 

“L:‘.” ylaf; q (%(k) [ ‘;tOtZ0,Uil)\<Ei0(t0,50)+a, i=1,2,3 
1 

is satisfied for every approximate motion z*(k) [t; t,, x0, Vi] [2] and the inequality 

max zl; q &,#0 [ ’ ; to, xo, &I) > EiC (to, ro) - U, 
Vj 

i = 1, 2, 3; j’ = 3, 2, i 

is satisfied for every motion “a(s) [r; to, 20, Vjj 
The given approximation in Problems 1 and 2 is stable with respect to information 

noise. We note that a meaningful interpretation of the solutions obtained in the class 

of mixed strategies can be achieved on passing to a stochastic procedure for choosing 

the players’ controls [l, 21, We note that in the purely linear case the problem consi- 
dered in the present paper was investigated in [2]. 

The author thanks N. N. Krasovskii and A. I. Subbotin for valuable remarks. 
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